

E.e. $\geq 99\%$ $[\alpha]_D^{25} = -40.2 \ (c \ 0.58, \ CHCl_3)$ Source of chirality: D-fructose and stereoselective synthesis Absolute configuration: 2S, 3R, 4R, 5R

C24H33NO6

1,2:4,5-Di-O-cyclohexylidene-3-pyridin-2-ylmethyl-β-D-fructopyranose

 $C_{36}H_{48}N_2O_{12}$ 6,6'-Di-(1,2:4,5-di-O-isopropylidene- β -D-fructopyranose)ylmethyl-2,2'-bipyridine

A53

Atsushi Kato, Erika Kano, Isao Adachi, Russell J. Molyneux, Alison A. Watson, Robert J. Nash, George W. J. Fleet, Mark R. Wormald, Haruhisa Kizu, Kyoko Ikeda and Naoki Asano* $\begin{array}{c} E.e. = 100\%\\ [\alpha]_D = +59.7 \ (c \ 0.58, \ H_2O)\\ Source \ of \ chirality: \ natural \ product \ isolated \ from \\ C_8H_{15}NO_4 \end{array}$

 $2,3,7\text{-}{\rm Tri}\textit{epi-} australine~(1R^*,2S^*,3S^*,7R^*,7aR^*)\text{-}3\text{-}{\rm hydroxymethyl-}1,2,7\text{-}{\rm trihydroxy-}pyrrolizidine~(1R^*,2S^*,3S^*,7R^*,7aR^*)\text{-}3\text{-}{\rm hydroxymethyl-}1,2,7\text{-}{\rm trihydroxy-}pyrrolizidine~(1R^*,2S^*,3S^*,3R^*,3R^*)$

ŌAc

 $\label{eq:C12H14O4} C_{12}H_{14}O_4$ (-)-(R)- α -Methyl-1,3-benzodioxole-5-ethyl acetate

E.e. = 96% $[\alpha]_{589}^{20} = -5.4$ (*c* 1.0, CHCl₃) Source of chirality: enzyme 'Amano PS'

Absolute configuration: R

Srinivasan Easwar and Narshinha P. Argade*

Tetrahedron: Asymmetry 14 (2003) 333

E.e. = 96% $[\alpha]_{589}^{20} = -34.2$ (c 1.0, CHCl₃) Source of chirality: enzyme 'Amano PS' Absolute configuration: R

ŌН

Tetrahedron: Asymmetry 14 (2003) 339

 $[\alpha]_{\rm D}^{20} = -74.3$ (c 2.28, CHCl₃) Source of chirality: commercially available (S)-(+)-2-amino-3-methyl-1-butanol Absolute configuration: (4S, 4'S)

(S,S)-4,6-Dibenzothiophenediyl-2,2'-bis(4-isopropyloxazoline)

Arnaud Voituriez and Emmanuelle Schulz*

(*R*,*R*)-4,6-Dibenzothiophenediyl-2,2'-bis(4-phenyloxazoline)

Ρh

 $C_{30}H_{22}N_2O_2S$

Tetrahedron: Asymmetry 14 (2003) 339

 $[\alpha]_{D}^{20} = -247.7 \ (c \ 1.29, \ CHCl_{3})$ Source of chirality: commercially available (R)-(-)-2-phenylglycinol Absolute configuration: (4R, 4R')

Jose L. Vicario, Dolores Badía,* Luisa Carrillo and Eneritz Ana	kabe	Tetrahedron: Asymmetry 14 (2003) 347
MeO	[α] ²⁰	=+28.0 (c 0.5, CH ₂ Cl ₂)
$C_{18}H_{21}NO_2$	Sour	ree of chirality: (S)-(+)-phenylglycine
[3 <i>R</i>]-6,7-Dimethoxy-2-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline	Abso	plute configuration: 3R

Richard F. G. Fröhlich, Antonina A. Zabelinskaja-Mackova,
Martin H. Fechter and Herfried Griengl*Tetrahedron: Asymmetry 14 (2003) 355OAc
 $\bigcirc Ac$
 $\bigcirc H$
 $\bigcirc Ac$
 $\bigcirc CN$
 $\bigcirc Ac$
 $\bigcirc (2120)$ D.e. =96%, e.e. =98%
 $[\alpha]_D^{20} = +105 (c \ 0.494, \ CH_3CN)$
Source of chirality: Enzyme HbHNL
Absolute configuration: R, R
 $M.p. = 119-121^{\circ}C$ 1,1'-Bis(acetoxycyanomethyl)ferroceneD.e. =96%, e.e. =98%
 $[\alpha]_D^{20} = +105 (c \ 0.494, \ CH_3CN)$
Source of chirality: Enzyme HbHNL
Absolute configuration: R, R
 $M.p. = 119-121^{\circ}C$

Toshinari H. Kurniadi, Rachid Bel Rhlid, Marcel A. Juillerat,* Martin Schüler and Ralf G. Berger E.e. = 72% $[\alpha]_D^{25} = -75 \ (c \ 0.06, \ CHCl_3)$ Absolute configuration: R(R)-(-)-3-Hydroxy-1-penten-4-one

Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* $[\alpha]_{D}^{25} = -40$ (*c* 0.46, CHCl₃) Source of chirality: L-malic acid Absolute configuration: 2S MeO .OMs MsO $C_8H_{18}O_8S_2$ Methanesulfonic acid 4-methanesulfonyloxy-2-methoxymethoxy-butyl ester Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti*

> $[\alpha]_{D}^{25} = 17$ (c 2.20, CHCl₃) Source of chirality: L-malic acid Absolute configuration: 3S

C₆H₁₃NO₃ 3-Methoxymethoxy-pyrrolidin-1-ol

 $[\alpha]_{D}^{25} = -77$ (c 1.28, CHCl₃) Source of chirality: L-malic acid OMOM Absolute configuration: 4S C₆H₁₁NO₃ 4-Methoxymethoxy-3,4-dihydro-2H-pyrrole 1-oxide Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* $[\alpha]_{D}^{25} = 33$ (c 2.63, CHCl₃) Source of chirality: L-malic acid OMOM Absolute configuration: 3S

C₆H₁₁NO₃ 3-Methoxymethoxy-3,4-dihydro-2H-pyrrole 1-oxide

Ó

Tetrahedron: Asymmetry 14 (2003) 367

Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti*

OMOM ĊН

Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* d.r. >20:1 (by NMR); e.e. 99% (GLC) $[\alpha]_{D}^{25} = -16 \ (c \ 0.80, \ CHCl_{3})$ O^tBu Bu^tO, Source of chirality: L-tartaric acid Absolute configuration: 2S,3S,4S C13H24N2O3 3,4-Di-tert-butoxy-1-hydroxy-pyrrolidine-2-carbonitrile Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* d.r. = 33:67 (by NMR); e.e. 99% (GLC) $[\alpha]_{D}^{25} = +21$ (c 0.40, CHCl₃) .O^tBu Source of chirality: L-malic acid Absolute configuration: 2S,3S ÓН C₉H₁₆N₂O₂ 3-tert-Butoxy-1-hydroxy-pyrrolidine-2-carbonitrile Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* d.r. = 33:67 (by NMR); e.e. 99% (GLC) $[\alpha]_{D}^{25} = +15 \ (c \ 0.10, \ \text{CHCl}_{3})$ OSiⁱPr₃ Source of chirality: L-malic acid Absolute configuration: 2S,3S C14H28N2O2Si 1-Hydroxy-3-(triisopropylsiloxy)-pyrrolidine-2-carbonitrile Tetrahedron: Asymmetry 14 (2003) 367 Pedro Merino,* Tomas Tejero, Julia Revuelta, Pilar Romero, Stefano Cicchi, Vanni Mannucci, Alberto Brandi and Andrea Goti* d.r. = 30:70 (by NMR); e.e. 99% (GLC) $[\alpha]_{D}^{25} = -50$ (*c* 0.10, CHCl₃) OMOM. Source of chirality: L-malic acid Absolute configuration: 2S,3S OH C7H12N2O3 1-Hydroxy-3-(methoxymethoxy)-pyrrolidine-2-carbonitrile A65

Tetrahedron: Asymmetry 14 (2003) 381

Ee = 98% $[\alpha]_{D}^{20} = -103$ (*c* 1.0, EtOAc) Source of chirality: chiral precursor Absolute configuration: 1R, 3R

 $C_{11}H_{14}O_2$ (1*R*,3*R*)-3-Hydroxymethyl-1,2,3,4-tetrahydronaphtalen-1-ol

.OH

OH

Yolanda Caro, Christian F. Masaguer and Enrique Raviña* $\begin{array}{c} F = 91\% \\ [\alpha]_D^{20} = +24.2 \ (c \ 1.0, \ EtOAc) \\ Source \ of \ chirality: \ lipase-catalyzed \ resolution \\ Absolute \ configuration: \ S \end{array}$ $(S)-(1-Oxo-1,2,3,4-tetrahydro-3-naphthyl)methyl \ acetate$

(3S,6S,1'S)-1,4-Bis-(1'-phenethyl)-2,5-dioxo-3-methyl-8-methylene-1,4-diazabicyclo[3.2.2]nonane

CH₃

 $C_{25}H_{28}N_2O_2$

HOH₂C

E.e. >95% $[\alpha]_{D}^{25} = -2.5$ (*c* 1.02, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: *S*

 $C_{24}H_{25}NO_3$ (1-Hydroxymethyl-1-methyl-2,2-diphenylethyl)carbamic acid benzyl ester

$$\begin{aligned} & \text{Jessis M. Peregrina,* David Sucurza and Maria M. Zurbano} \\ & \underset{\substack{\mu \in \\ \mu \in \\ \mu \in \\ \nu \in$$

Alberto Avenoza,* Jesús H. Busto, Carlos Cativiela,

Tetrahedron: Asymmetry 14 (2003) 399

Tetrahedron: Asymmetry 14 (2003) 399 Alberto Avenoza,* Jesús H. Busto, Carlos Cativiela, Jesús M. Peregrina,* David Sucunza and María M. Zurbano E.e. >95% $[\alpha]_D^{25} = -5.8$ (c 1.34, MeOH) Source of chirality: asymmetric synthesis H_3 Absolute configuration: R HOH₂C NHCbz $C_{14}H_{21}NO_4$ (2-Hydroxy-1-hydroxymethyl-1,2-dimethylpropyl)carbamic acid benzyl ester Tetrahedron: Asymmetry 14 (2003) 399 Alberto Avenoza,* Jesús H. Busto, Carlos Cativiela, Jesús M. Peregrina,* David Sucunza and María M. Zurbano E.e. >95%

 H_3C HO₂C

 $\label{eq:c6H13NO3} C_6 H_{13} NO_3$ 2-Amino-3-hydroxy-2,3-dimethylbutyric acid

 $[\alpha]_{D}^{25} = +6.3$ (c 1.20, H₂O) Source of chirality: asymmetric synthesis Absolute configuration: S